Home > FMAToolbox > Analyses > private > mtspecgrampt_optimized.m

mtspecgrampt_optimized

PURPOSE ^

Multi-taper time-frequency spectrum - point process times

SYNOPSIS ^

function [S,t,f,R,Serr]=mtspecgrampt(data,movingwin,params,fscorr)

DESCRIPTION ^

 Multi-taper time-frequency spectrum - point process times

 Usage:

 [S,t,f,R,Serr]=mtspecgrampt(data,movingwin,params,fscorr)
 Input: 
       data        (structure array of spike times with dimension channels/trials; 
                   also accepts 1d array of spike times) -- required
       movingwin         (in the form [window,winstep] i.e length of moving
                                                 window and step size.
                                                 
       params: structure with fields tapers, pad, Fs, fpass, err, trialave
       - optional
           tapers : precalculated tapers from dpss or in the one of the following
                    forms: 
                    (1) A numeric vector [TW K] where TW is the
                        time-bandwidth product and K is the number of
                        tapers to be used (less than or equal to
                        2TW-1). 
                    (2) A numeric vector [W T p] where W is the
                        bandwidth, T is the duration of the data and p 
                        is an integer such that 2TW-p tapers are used. In
                        this form there is no default i.e. to specify
                        the bandwidth, you have to specify T and p as
                        well. Note that the units of W and T have to be
                        consistent: if W is in Hz, T must be in seconds
                        and vice versa. Note that these units must also
                        be consistent with the units of params.Fs: W can
                        be in Hz if and only if params.Fs is in Hz.
                        The default is to use form 1 with TW=3 and K=5
                     Note that T has to be equal to movingwin(1).

            pad            (padding factor for the FFT) - optional (can take values -1,0,1,2...). 
                    -1 corresponds to no padding, 0 corresponds to padding
                    to the next highest power of 2 etc.
                       e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
                       to 512 points, if pad=1, we pad to 1024 points etc.
                       Defaults to 0.
           Fs   (sampling frequency) - optional. Default 1.
           fpass    (frequency band to be used in the calculation in the form
                                   [fmin fmax])- optional. 
                                   Default all frequencies between 0 and Fs/2
           err  (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars
                                   [0 p] or 0 - no error bars) - optional. Default 0.
           trialave (average over trials/channels when 1, don't average when 0) - optional. Default 0
       fscorr   (finite size corrections, 0 (don't use finite size corrections) or 
                1 (use finite size corrections) - optional
                (available only for spikes). Defaults 0.

 Output:
       S       (spectrogram with dimensions time x frequency x channels/trials if trialave=0; 
               dimensions time x frequency if trialave=1)
       t       (times)
       f       (frequencies)

       Serr    (error bars) - only if err(1)>=1

 This is an optimized version of Chronux 2.11, which pre-calculates tapers and their fft
 before looping through the spectrogram windows. Optimization by Ralitsa Todorova 2016.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [S,t,f,R,Serr]=mtspecgrampt(data,movingwin,params,fscorr)
0002 % Multi-taper time-frequency spectrum - point process times
0003 %
0004 % Usage:
0005 %
0006 % [S,t,f,R,Serr]=mtspecgrampt(data,movingwin,params,fscorr)
0007 % Input:
0008 %       data        (structure array of spike times with dimension channels/trials;
0009 %                   also accepts 1d array of spike times) -- required
0010 %       movingwin         (in the form [window,winstep] i.e length of moving
0011 %                                                 window and step size.
0012 %
0013 %       params: structure with fields tapers, pad, Fs, fpass, err, trialave
0014 %       - optional
0015 %           tapers : precalculated tapers from dpss or in the one of the following
0016 %                    forms:
0017 %                    (1) A numeric vector [TW K] where TW is the
0018 %                        time-bandwidth product and K is the number of
0019 %                        tapers to be used (less than or equal to
0020 %                        2TW-1).
0021 %                    (2) A numeric vector [W T p] where W is the
0022 %                        bandwidth, T is the duration of the data and p
0023 %                        is an integer such that 2TW-p tapers are used. In
0024 %                        this form there is no default i.e. to specify
0025 %                        the bandwidth, you have to specify T and p as
0026 %                        well. Note that the units of W and T have to be
0027 %                        consistent: if W is in Hz, T must be in seconds
0028 %                        and vice versa. Note that these units must also
0029 %                        be consistent with the units of params.Fs: W can
0030 %                        be in Hz if and only if params.Fs is in Hz.
0031 %                        The default is to use form 1 with TW=3 and K=5
0032 %                     Note that T has to be equal to movingwin(1).
0033 %
0034 %            pad            (padding factor for the FFT) - optional (can take values -1,0,1,2...).
0035 %                    -1 corresponds to no padding, 0 corresponds to padding
0036 %                    to the next highest power of 2 etc.
0037 %                       e.g. For N = 500, if PAD = -1, we do not pad; if PAD = 0, we pad the FFT
0038 %                       to 512 points, if pad=1, we pad to 1024 points etc.
0039 %                       Defaults to 0.
0040 %           Fs   (sampling frequency) - optional. Default 1.
0041 %           fpass    (frequency band to be used in the calculation in the form
0042 %                                   [fmin fmax])- optional.
0043 %                                   Default all frequencies between 0 and Fs/2
0044 %           err  (error calculation [1 p] - Theoretical error bars; [2 p] - Jackknife error bars
0045 %                                   [0 p] or 0 - no error bars) - optional. Default 0.
0046 %           trialave (average over trials/channels when 1, don't average when 0) - optional. Default 0
0047 %       fscorr   (finite size corrections, 0 (don't use finite size corrections) or
0048 %                1 (use finite size corrections) - optional
0049 %                (available only for spikes). Defaults 0.
0050 %
0051 % Output:
0052 %       S       (spectrogram with dimensions time x frequency x channels/trials if trialave=0;
0053 %               dimensions time x frequency if trialave=1)
0054 %       t       (times)
0055 %       f       (frequencies)
0056 %
0057 %       Serr    (error bars) - only if err(1)>=1
0058 %
0059 % This is an optimized version of Chronux 2.11, which pre-calculates tapers and their fft
0060 % before looping through the spectrogram windows. Optimization by Ralitsa Todorova 2016.
0061 
0062 if nargin < 2; error('Need data and window parameters'); end;
0063 if nargin < 3; params=[]; end;
0064 
0065 [tapers,pad,Fs,fpass,err,trialave,params]=getparams(params);
0066 if length(params.tapers)==3 & movingwin(1)~=params.tapers(2);
0067     error('Duration of data in params.tapers is inconsistent with movingwin(1), modify params.tapers(2) to proceed')
0068 end
0069 
0070 data=change_row_to_column(data);
0071 if isstruct(data); Ch=length(data); end;
0072 if nargin < 4 || isempty(fscorr); fscorr=0; end;
0073 if nargout > 4 && err(1)==0; error('Cannot compute errors with err(1)=0'); end;
0074 
0075 [mintime,maxtime]=minmaxsptimes(data);
0076 tn=(mintime+movingwin(1)/2:movingwin(2):maxtime-movingwin(1)/2);
0077 Nwin=round(Fs*movingwin(1)); % number of samples in window
0078 nfft=max(2^(nextpow2(Nwin)+pad),Nwin);
0079 f=getfgrid(Fs,nfft,fpass); Nf=length(f);
0080 params.tapers=dpsschk(tapers,Nwin,Fs); % check tapers
0081 nw=length(tn);
0082 
0083 if trialave
0084     S = zeros(nw,Nf);
0085     R = zeros(nw,1);
0086     if nargout==4; Serr=zeros(2,nw,Nf); end;
0087 else
0088     S = zeros(nw,Nf,Ch);
0089     R = zeros(nw,Ch);
0090     if nargout==4; Serr=zeros(2,nw,Nf,Ch); end;
0091 end
0092 
0093 tapers=dpsschk(tapers,Nwin,Fs); % check tapers
0094 [f,findx]=getfgrid(Fs,nfft,fpass); % get frequency grid for evaluation
0095 K=size(tapers,2); % number of tapers
0096 nfreq=length(f); % number of frequencies
0097 H=fft(tapers,nfft,1);  % fft of tapers
0098 H=H(findx,:); % restrict fft of tapers to required frequencies
0099 w=2*pi*f; % angular frequencies at which ft is to be evaluated
0100 
0101 for n=1:nw;
0102     t=linspace(tn(n)-movingwin(1)/2,tn(n)+movingwin(1)/2,Nwin);
0103     datawin=extractdatapt(data,[t(1) t(end)]);
0104     datawin=change_row_to_column(datawin);
0105     if isstruct(datawin); C=length(datawin); else C=1; end% number of channels
0106     Nsp=zeros(1,C); Msp=zeros(1,C);
0107     for ch=1:C;
0108         if isstruct(datawin);
0109             fnames=fieldnames(datawin);
0110             eval(['dtmp=datawin(ch).' fnames{1} ';'])
0111             indx=find(dtmp>=min(t)&dtmp<=max(t));
0112             if ~isempty(indx); dtmp=dtmp(indx);
0113             end;
0114         else
0115             dtmp=datawin;
0116             indx=find(dtmp>=min(t)&dtmp<=max(t));
0117             if ~isempty(indx); dtmp=dtmp(indx);
0118             end;
0119         end;
0120     end
0121     Nsp(ch)=length(dtmp);
0122     Msp(ch)=Nsp(ch)/length(t);
0123     if Msp(ch)~=0;
0124         data_proj=interp1(t',tapers,dtmp);
0125         exponential=exp(-i*w'*(dtmp-t(1))');
0126         J(:,:,ch)=exponential*data_proj-H*Msp(ch);
0127     else
0128         J(1:nfreq,1:K,ch)=0;
0129     end;
0130     s=squeeze(mean(conj(J).*J,2));
0131     if trialave; s=squeeze(mean(s,2));Msp=mean(Msp);end;
0132     r=Msp*Fs;
0133     if nargout==5;
0134         if fscorr==1;
0135             serr=specerr(S,J,err,trialave,Nsp);
0136         else
0137             serr=specerr(S,J,err,trialave);
0138         end
0139         Serr(1,n,:,:)=squeeze(serr(1,:,:));
0140         Serr(2,n,:,:)=squeeze(serr(2,:,:));
0141     end;
0142     S(n,:,:)=s;
0143     R(n,:)=r;
0144 end;
0145 t=tn;
0146 S=squeeze(S); R=squeeze(R); if nargout==5; Serr=squeeze(Serr);end
0147 
0148

Generated on Fri 16-Mar-2018 13:00:20 by m2html © 2005